3.114 \(\int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=114 \[ \frac {(A-7 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a \cos (c+d x)+a}} \]

[Out]

1/2*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+1/4*(A-7*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+
c))^(1/2))/a^(3/2)/d*2^(1/2)+2*C*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {3020, 2751, 2649, 206} \[ \frac {(A-7 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A - 7*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A + C
)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + (2*C*Sin[c + d*x])/(a*d*Sqrt[a + a*Cos[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 3020

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(
b*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e
+ f*x])^(m + 1)*Simp[a*A*(m + 1) - a*C*m + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C},
 x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx &=\frac {(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {-\frac {1}{2} a (A-3 C)-2 a C \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=\frac {(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}+\frac {(A-7 C) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{4 a}\\ &=\frac {(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}-\frac {(A-7 C) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{2 a d}\\ &=\frac {(A-7 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.46, size = 77, normalized size = 0.68 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) (A+4 C \cos (c+d x)+5 C)+(A-7 C) \cos \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 a d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A - 7*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + (A + 5*C + 4*C*Cos[c + d*x])*Tan[(c + d*x)/2])/(2*a*d*
Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 181, normalized size = 1.59 \[ -\frac {\sqrt {2} {\left ({\left (A - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 7 \, C\right )} \cos \left (d x + c\right ) + A - 7 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (4 \, C \cos \left (d x + c\right ) + A + 5 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/8*(sqrt(2)*((A - 7*C)*cos(d*x + c)^2 + 2*(A - 7*C)*cos(d*x + c) + A - 7*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 +
 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x
 + c) + 1)) - 4*(4*C*cos(d*x + c) + A + 5*C)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*
a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

giac [A]  time = 2.93, size = 129, normalized size = 1.13 \[ \frac {\frac {{\left (\frac {\sqrt {2} {\left (A a^{2} + C a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3}} + \frac {\sqrt {2} {\left (A a^{2} + 9 \, C a^{2}\right )}}{a^{3}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {\sqrt {2} {\left (A - 7 \, C\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {3}{2}}}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*((sqrt(2)*(A*a^2 + C*a^2)*tan(1/2*d*x + 1/2*c)^2/a^3 + sqrt(2)*(A*a^2 + 9*C*a^2)/a^3)*tan(1/2*d*x + 1/2*c)
/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) - sqrt(2)*(A - 7*C)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2
*d*x + 1/2*c)^2 + a)))/a^(3/2))/d

________________________________________________________________________________________

maple [B]  time = 1.08, size = 254, normalized size = 2.23 \[ \frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -7 C \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

1/4/cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/c
os(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a-7*C*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2
*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^2*a+8*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+
1/2*c)^2+A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^
(5/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((A + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________